Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic path order with status [19].
Quasi-Precedence:
sel2 > activate1 > f1 > [cons2, nf1, ng1, 0, s1]
sel2 > activate1 > g1 > [cons2, nf1, ng1, 0, s1]
Status: sel2: [1,2]
f1: [1]
0: multiset
s1: [1]
ng1: [1]
nf1: [1]
cons2: [2,1]
g1: [1]
activate1: [1]